Performance Evaluation of Highly Multiplexed Microbiology/MCM Devices – End User Perspective

Christine C. Ginocchio, Ph. D., M. T. (A.S.C.P.)

Senior Medical Director and Chief, Division of Infectious Disease Diagnostics,

North Shore-LIJ Health System Laboratories, NY

Professor, Department of Pathology and Laboratory Medicine and Department of Molecular Medicine, Feinstein Institute for Medical Research, Hofstra University North Shore-LIJ

School of Medicine, NY

Advancing Regulatory Science for Highly Multiplexed
Microbiology/Medical Countermeasure Devices
FDA, MD October 13, 2011

Disclosures: Scientific Advisory Board, Consultancy, Speaker's Bureau, Research Funding and/or Clinical Trial Funding Abbott, Becton Dickinson, bioMerieux, Copan, Curetis, Gen-Probe, Luminex, Nanosphere

Laboratory and Clinical Acceptance: Necessity and Use

Unmet clinical need and/or service improvement

- Is it relevant to our patient population?
- Does it contain the appropriate scope of analytes?
- Will the test change clinical practice?
- Do clinicians want the test?
- Will they accept and use the test?
- How do we ensure appropriate use?
- How do we monitor usage?
- How do we educate our medical and nursing staff?
- Does the clinical benefit outweigh the cost?

Laboratory Acceptance

- FDA Status
 - Impact on regulatory requirements: verification/validation/QC vs LDT
 - CLIA, CAP, State
 - Expense, time, expertise to verify or validate
- Performance characteristics
 - Improves diagnostic yield (current and new analytes)
 - Comparable or better to current methods
 - Sensitivity, specificity, PPV, NPV
- Expertise required to perform assay
- Desire for new and innovative technology

Laboratory Adoption

- Cost benefit ratio:
 - Bring revenue to lab (out reach)
 - Save money
 - Replace a costly send out test
 - Save technical time
 - Combines multiple tests in one assay
 - Decrease in reagent costs
 - Increase in laboratory testing costs
 - Provides strong clinical benefit and "hospital" savings
- Evaluate laboratory costs
 - Instrumentation, technical time, reagents
- Work flow/turn around time
 - STAT vs batch, once a day, multiple runs, 24/7??
- Space

Composition of Multiplex Assays

- Comprehensive so supplemental testing is not required: replace not add on (\$\$\$\$)
- Must not be incrementally more expensive by analyte number
- Analytes must be clinically relevant for diagnosis, syndrome and/or patient population
- Option to limit test results: Software function
- Multiplex convenience should not result in decreased sensitivity of detection

Selection of Sample Type(s)

- How many specimen types will require validation?
- Will the sample types be related (NP wash, NP aspirate, NP swab) or potentially highly diverse (CSF, urine, blood)?
- Among related types how many need individual validation and how many positives per type?
- Will sample type effect target stability prior to testing?
- Will certain sample types require pretreatment steps?

Nucleic Acid Extraction

- May require more stringent conditions for nucleic acid isolation and sample purity
- May need to recover a mixture of nucleic acids
 - Ex: RNA and DNA viruses
- Recovery at potentially variable clinically relevant levels:
 - Colonization vs infection
 - Amount of target present during infection
 - Time of sample collection
- Efficiency across all targets and sample types
 - Removal of amplification inhibitors
 - Effect of interfering substances
 - Possibility of multiple targets (high and low titer)
- Will input and extractions volumes vary by specimen type?

Multiplex Considerations

- Complex assay parameters
- Test the multiplex system in its final format to assess:
 - target competition
 - cross reactivity among the different primers and probes
 - potential cross over of signals between analytes
- Validate each analyte per sample type
- Demonstrate equal detection of all potential targets, alone and in combination with other analytes detected simultaneously by the system
- How many potential positives/sample?

Need for an Internal Control?

- May not be necessary if extraction removes >99% of inhibitors for EACH sample type to be tested
 - Test numbers (n=?) of individual sample types with spiked target(s) at the LOD
- Design an internal control that goes through the entire process (also serves as an extraction control)
 - Low copy housekeeping gene (specimen quality)
 - Spiked IC (IVTs) at low copy (≤10 fold over LOD)
 - Validates sample results
 - Non-competitive (impair sensitivity)
- Establish inhibition rates per sample type using multiple individual samples (not pooled)
- Establish acceptable range for IC (not just positive)

Development of External Controls

- Need to verify all reagents for each target
- Need to include controls in every run
 - Need to verify all targets every run?
 - Test more controls than patients
 - Are process controls acceptable for single unit devices?
- Should go through the entire test procedure
- Should mimic real samples as best as possible (be present in appropriate matrix)
- Should be tested at an analytically and clinically relevant level

External Controls

- Difficult to find for rare analytes, laboratories unable to prepare own controls
- Come in the test kit
 - Can not be used to validate that specific lot or shipment
- Be provided external to kit by manufacturer
- Commercially available
- Should be part of the test development

Availability of Validation Materials

- Problems:
 - Rare targets
 - Seasonal targets
 - Organisms unable to grow in culture
- Alternative sources
 - Retrospective banks of previously characterized selected positive samples
 - How characterized (guidelines for method acceptability)
 - Storage requirements
 - Retrospective banks of all previously characterized samples (positive and negative)
 - Process to eliminate bias for random
 - Ability to retest with previous method with discordant results vs new test
 - Degradation during storage
 - New device more sensitive than predicate device

Comparison to a "Gold Standard"

- Compare to current non-molecular method
- Compare to another FDA IVD of high quality
- Problems
 - No comparator available
 - Comparator method is less sensitive and/or specific than new assay
- Effects assay sensitivity and specificity
- Discordant resolution
 - Against well validated LDT with bi-directional sequencing
 - Testing needs to be done on all samples?
 - Discordant analysis should be included in primary performance outcomes

Laboratory Interpretation of Results

- User friendly software
- Interpretation of complex algorithms
- Need to establish positive/negative thresholds per target or is one acceptable?
 - May loose sensitivity and/or specificity
- Need for an indeterminate zone?
- Is the level of detection relevant to any or all targets?
 - Any presence significant
 - Differentiate colonization vs infection

Clinical Interpretation of Results

- What is the clinical impact of a false negative/ false positive result?
 - Treatment (wrong or lack of)
 - Infection control: cohorting, transmission
- What is the clinical significance of mixed infections?
 - Mixed viral, bacterial or both
 - May or may not yet know
- How should we report mixed infections?
- Medical education

Clinical Validation

Results correlate with clinical disease May not be necessary for established disease

- Clinical sensitivity
 - Relative to clinical decision making
 - Relative to target, specimen source
 - Too sensitive may not always be best
- Clinical specificity
 - Ability of the test to give a positive result in the presence of disease (PPV)
 - Ability of the test to give a negative result in the absence of disease (NPV)
 - What is the clinical impact of a false positive result for a rare analyte?

Clinical Validation

- Define reference range
 - Relative to target, specimen source
 - Relative to patient population
 - Relative to disease state
- Sources and references
 - Published literature
 - Clinical trials and evaluations
 - Chart reviews

Post-analytical Validation

- Software interpretations
- Calculations
- Instrument report formats
- Instrument maintenance
- Stability of nucleic acids during storage
- Stability of samples for retest
- Stability of reagents over time

Laboratory Implementation 20

Laboratory Implementation Parameters

- Assay and equipment verification
- Data analysis and reporting
- LIS/HIS
- SOPM
- Training and competency assessment
- Proficiency testing
- Clinical staff education

Verification Studies

- Analytical sensitivity/specificity
- Accuracy/precision
- Reproducibility
- Clinical sensitivity/specificity
- Reference range
- Instrumentation performance
- Quality control performance

Verification Studies

- Demonstrate that you have verified the analytical and post-analytical performance characteristics as established by the manufacturer
 - Varies whether qualitative or quantitative assay:
- Confirm reference values and reportable ranges
- Confirm clinical performance
- Adequate number and reasonable distribution of sample types tested
- Results compared to another valid assay
- Can cite references

Clinical Verification

- What to test, how to test, when to test and how much to test?????
- Need to balance establishing accurate performance characteristics with cost, time, and practicality
 - Specimen availability: rare or common target
 - Primers, probes: previously published or new
 - Comparator assays: available or not
 - Experience with specimen type(s)
 - Experience with technology

Verification Materials

- Studies performed in appropriate and all sample matrices to be tested clinically
 - Sensitivity, specificity, inhibition
- Clinical specimens of known reactivity or concentration (previously tested)
- Stock organisms (rare targets???)
- Commercial sources
 - RNA, DNA, whole virus, panels
 - Manufacturer provided validation panels
- Spiked samples
- Split samples reference laboratory
- Proficiency test samples

External Controls

- Check for:
 - Operator, instrument, reagents, sample, environment
- Monitor all aspects of the analytical process:
 - Sample addition, sample preparation, nucleic acid purity and quantity, reagent addition, reagent function, inhibition, reaction, detection and resulting
- Type and frequency depend on:
 - FDA status, CLIA, CAP. State requirements
 - Manufacturer requirements as stated in PI
 - Test format (single cartridge vs batch)
 - Every analyte: new lot, new shipment
 - Individual (\$\$\$\$) or pools
 - Rotate over test runs

Staff Training and Competency

- Read and sign SOPM
- Training:
 - Prior to clinical testing
- Blinded competency panels
 - In-house, commercially purchased
- Competency
 - PT samples, in-house blinded panels
 - Visual observation
 - Yearly
- Documentation

PT Testing (CLIA-88)

- Minimum of 5 samples per testing event (based on method: culture, PCR, DFA etc)
- Minimum of three testing events at approximately equal intervals per year (CMS regulated analyte)
- Minimum of two testing events at approximately equal intervals per year (nonregulated analyte)
- Limited commercial PT source materials
- In-house proficiency test materials
 - blinded commercial panels of known reactivity
 - samples split with a reference laboratory
 - previously tested samples of know reactivity

Reimbursement

Reimbursement Issues

- Will we be reimbursed and at what rate?
- Will reimbursement at a minimum cover testing costs?
- Varies by:
 - payor, plan within payor, HMO, capitated, State (CMS)
- FDA status does not guarantee payment
- Lack of target specific CPT codes
- Must use generic code xxxx times 1,2,3,4.....
- MUEs: limit number of same CPT per day/patient
- Will reimbursement change to "syndromic" regardless of number of pathogens detected?

